服务热线:
400-028-3350

阀控式密封铅酸蓄电池技术与维护

详细介绍

  (1)AGM电池使用初期无气体逸出,GEL电池在使用初期需安装排风装置。

  (3)AGM电池的一致性和均一性较好,因电解液的扩散性和均匀性优于GEL电池。

  铅酸蓄电池的基本电极反应是铅(Pb)和二价铅(Pb2+)及四价铅(Pb4+)之间的转化。

  电池在充电过程中,正极除了有PbSO4转变为PbO2以外,还有氧析出反应,特别是电池的充电后期,当电池容量达到80%时,氧的析出反应更为剧烈,两极的气体析出反应如下:

  对于浮充使用的VRLA电池,即使是浮充电流很小,但在长期浮充状态下,除浮充电流一部分用于电池自放电生成的PbSO4转为正负极活性物资以外,不避免的,浮充电流另一部分则用于水的电解,使正极析出氧气,负极析出氢气。

  氧和氢气的产生使电池里面失水,电解液密度发生明显的变化,也使电池难以密封。从铅酸蓄电池诞生以来,人们都一直在寻求电池的密封,以此减少对电池的维护。VRLA电池的出现,实现了电池的密封,电池密封的关键技术是氧在电池里面的再复合实现氧的循环,以及采用AGM隔板吸收电解液,使电池里面没有流动的电解液,氧的复合原理如图3、4所示:

  从图3、4看出,正极充电过程中因电解水析出的氧气,通过AGM隔板的孔隙,迅速扩散到负极,与负极活性物质海绵状铅发生反应生成氧化铅(PbO),负极表面的PbO遇到电解液H2SO4发生化学反应生成PbSO4和H2O,其中PbSO4再充电而转变为海绵状Pb,生成的H2O又回到电解液,因氧气的再复合,避免了水的损失,以此来实现了电池的密封。

  2) 采取定量灌酸,使玻璃棉隔板在吸收电解液以后,仍有5—10%的孔隙率未被电解液充满,因此VRLA电池又称为贫液式电池。

  3)过量的负极活性物资,正、负极板的容量比一般为1:1.1~1:1.2,这样在正极充足电以后,负极仍未充足电,以防止氢在负极析出,若氢气大量析出是无法复合的。

  4)电池集群的紧装配,采取集群预压缩技术,将装配压在40—60Kpa之间,以保证AGM隔板与正负极板表面能够良好接触,因为VRLA电池的电解液主要靠AGM隔板提供。

  5)高纯度Pb—Ca—Sn—Al无锑板栅合金,因为Pb—Ca合金比Pb—Sb合金有更高的析氢过电位,从而能够降低因板栅腐蚀而析出氢气的可能性。

  6)开闭阀压力稳定可靠的安全阀,通信用VRLA电池的规定要求开阀压10—35Kpa,闭阀压3—15Kpa,开闭阀压力较接近,可减少气体排放和水的损失。

  3)采用恒压限流的充电方式,VRLA电池对过充电较为敏感,过充电会加速电流的损坏,恒压限流充电可防止过充电和热失控。

  应用同样的氧复合原理,但由于采用不一样的固定电解液技术和不同的氧复合通道技术,因此可分为两大类型的VRLA电池,即AGM技术和GEL技术(胶体),故又称为AGM电池和胶体电池。这两类电池各有优劣,目前在电信、电力等市场上应用的仍以AGM电池为主。

  采用AGM技术的VRLA电池,AGM隔板采用U形包覆法(也可采用S形包覆法)。采用AGM技术的VRLA电池的特点:内阻小,以超细玻璃棉隔板吸取电解液,使电池内没有电解液,AGM隔板具有93%以上的孔隙率,而其中10%左右的孔隙作为由正极析出的O2到负极再复合的通道,以实现氧的循环,达到电池密封的目的。

  胶体电池的特点:内阻较大,采用触变性SiO2胶体吸收电解液,使电解液不流动。

  以胶体的微裂纹O2的复合通道。胶体电池使用初期由于胶体未能形成大量微裂纹,氧的复合效率较低。

  VRLA电池尽管有许多的优点,但它和所有电池一样也存在可靠性和寿命问题。VRL电池文献报道:其常规使用的寿命为15年左右(25℃浮充使用)。但国内外的VRLA电池在实际使用的过程中,均出现过提前失效的现象。目前造成VRLA电池的失效模式主要有板栅的腐蚀与增长、电解液干涸、负极硫酸盐化、早期容量损失(PCL)、热失控等。

  VLRA电池在使用前必须正确的选择型号,以保证电池有足够的放电容量,使通信设施能够正常运行;另外选择合理的容量可避开选择容量过大而造成浪费。